Những câu hỏi liên quan
Phạm Kim Oanh
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 4 2022 lúc 17:15

Ta có:

\(\left(b^2+c^2+1\right)\left(1+1+a^2\right)\ge\left(a+b+c\right)^2=9\)

\(\Rightarrow\dfrac{1}{b^2+c^2+1}\le\dfrac{a^2+2}{9}\)

\(\Rightarrow\dfrac{a}{b^2+c^2+1}\le\dfrac{a^3+2a}{9}\)

Tương tự: \(\dfrac{b}{c^2+a^2+1}\le\dfrac{b^3+2b}{9}\) ; \(\dfrac{c}{a^2+b^2+1}\le\dfrac{c^3+2c}{9}\)

Cộng vế:

\(VT\le\dfrac{a^3+b^3+c^3+2\left(a+b+c\right)}{9}=\dfrac{a^3+b^3+c^3+6}{9}\) (1)

Lại có:

\(\left(a^3+1+1\right)+\left(b^3+1+1\right)+\left(c^3+1+1\right)\ge3a+3b+3c\)

\(\Rightarrow a^3+b^3+c^3\ge3\Rightarrow6\le2\left(a^3+b^3+c^3\right)\) (2)

(1);(2) \(\Rightarrow VT\le\dfrac{a^3+b^3+c^3+2\left(a^3+b^3+c^3\right)}{9}=\dfrac{a^3+b^3+c^3}{3}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (1)
Trần Tuấn Hoàng
Xem chi tiết
ITACHY
Xem chi tiết
Nhã Doanh
13 tháng 8 2018 lúc 11:22

Ta có: \(x^3+y^{ 3}=\left(x+y\right)\left(x^2-xy+y^2\right)\ge\left(x+y\right)\left(2xy-xy\right)=\left(x+y\right)xy,\forall x,y\ge0\)

Áp dụng:

\(\sum_{cyc}\dfrac{1}{a^3+b^3+abc}\le\sum_{cyc}\dfrac{1}{\left(a+b\right)ab+abc}=\sum_{cyc}\dfrac{1}{ab\left(a+b+c\right)}=\dfrac{a+b+c}{abc\left(a+b+c\right)}=\dfrac{1}{abc}\)

\("="\Leftrightarrow a=b=c\)

Bình luận (0)
Nhã Doanh
25 tháng 7 2018 lúc 11:34

Ta có: \(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\ge\left(x+y\right)\left(2xy-xy\right)=\left(x+y\right)xy\)( \(\forall x,y\ge0\) )

Áp dụng: \(\sum\dfrac{1}{a^3+b^3+abc}\le\dfrac{1}{\left(a+b\right)ab+abc}=\sum\dfrac{1}{ab\left(a+b+c\right)}=\dfrac{a+b+c}{abc\left(a+b+c\right)}=\dfrac{1}{abc}\)

\("="\Leftrightarrow a=b=c\)

Bình luận (0)
Diệp Nguyễn Thị Huyền
Xem chi tiết
kaito
Xem chi tiết
Hiếu Cao Huy
24 tháng 1 2018 lúc 20:49

ta chứng minh đc \(x^3+y^3\ge xy\left(x+y\right)\)

thay vào + biến đổi ta có đpcm

đẳng thúc xảy ra khi a=b=c

lol!!!

Bình luận (0)
Phạm Kim Oanh
Xem chi tiết
Alan
Xem chi tiết
Nguyễn Hoàng Minh
Xem chi tiết
Lightning Farron
30 tháng 12 2017 lúc 12:05

Ta có BĐT:

\(a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\)\(\ge\left(a+b\right)ab\)

\(\Rightarrow a^3+b^3+abc\ge ab\left(a+b+c\right)\)

\(\Rightarrow\dfrac{1}{a^3+b^3+abc}\le\dfrac{1}{ab\left(a+b+c\right)}\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế:

\(VT\le\dfrac{1}{ab\left(a+b+c\right)}+\dfrac{1}{bc\left(a+b+c\right)}+\dfrac{1}{ac\left(a+b+c\right)}\)

\(=\dfrac{a+b+c}{abc\left(a+b+c\right)}=\dfrac{1}{abc}=VP\)

Khi \(a=b=c\)

Bình luận (0)
Thư Trần
Xem chi tiết
Gia Huy
18 tháng 6 2023 lúc 21:35

Đặt \(x=\dfrac{1}{a},y=\dfrac{1}{b},z=\dfrac{1}{c}\) khi đó thu được \(xyz=1\)

Ta có:

\(\dfrac{1}{a^2\left(b+c\right)}=\dfrac{x^2}{\dfrac{1}{y}+\dfrac{1}{z}}=\dfrac{x^2yz}{y+z}=\dfrac{x}{y+z}\)

BĐT cần chứng minh được viết lại thành:\(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\ge\dfrac{3}{2}\)

\(\Leftrightarrow\left(\dfrac{x}{y+z}+1\right)+\left(\dfrac{y}{z+x}+1\right)+\left(\dfrac{z}{x+y}+1\right)\ge\dfrac{9}{2}\)

\(\Leftrightarrow\left(x+y+z\right)\left(\dfrac{1}{y+z}+\dfrac{1}{z+x}+\dfrac{1}{x+y}\right)\ge\dfrac{9}{2}\)

Đánh giá cuối cùng đúng theo BĐT Cauchy

Vậy BĐT được chứng minh. Đẳng thức xảy ra khi và chỉ khi  a = b = c = 1.

Bình luận (1)